Synthesis of Indolyl Imidazole Derivatives via Base-Promoted Tandem Reaction of *N*-[2-(1-Alkynyl)phenyl]carbodiimides with Isocyanides

Wenyan Hao, Yuanyuan Jiang, and Mingzhong Cai*

College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China

Supporting Information

ABSTRACT: An efficient route to indolyl imidazole derivatives has been developed through a base-promoted tandem reaction of N-[2-(1-alkynyl)phenyl]carbodiimides with isocyanides in DMSO at 40 °C. The present tandem process allows the assembly of a variety of indolyl imidazole derivatives in moderate to good yields.

onstruction of natural product-like compounds with → privileged scaffolds that are prone to display different biological activities are in great demand. Among these privileged scaffolds, the indole unit is abundant in natural heterocycles and acts as the functional core in the structures of various fragrances, dyes, agricultural chemicals, and pharmaceuticals.¹ The synthesis of indoles has been an active research field due to their structural diversity as well as numerous applications of natural and synthetic indole derivatives. Over the past several decades, enormous efforts have been devoted to the development of these heteroaromatic compounds, and a variety of approaches have been successfully developed.² For instance, the venerable Fischer indole synthesis was represented as one of the most powerful and versatile routes for the synthesis of indole heterocycles, although this method often suffers from several drawbacks such as using strong acids; certain carcinogenic, unstable, and not readily available hydrazines; and poor regioselectivity with nonsymmetric ketones.³ The synthesis of indoles catalyzed by transition metals such as palladium,⁴ copper,⁵ iron,⁶ and rhodium⁷ has been highlighted by Larock and other researchers. However, there are few methods reported for the preparation of the indolyl imidazole skeletons, especially an imidazole ring on the indole nitrogen.8 Considering the importance of imidazole derivatives,⁹ development of an efficient and practical route for the preparation of indolyl imidazoles is of highly desirable.

Isocyanide addition chemistry has also attracted much attention recently, and the important progress of isocyanide additions for the construction of *N*-heterocyclic compounds has been witnessed.^{10–13} For instance, Wu and co-workers reported the synthesis of tetrahydroindeno[2,1-*b*]pyrroles via a base-promoted reaction of (*E*)-2-alkynylphenylchalcone with 2-isocyanoacetate.^{10a} Carbodiimide has been widely used in heterocyclic synthesis, cycloaddition reactions, and peptide and nucleotide coupling reactions as a diversity of reagent in the field of organic synthesis because of its special electronic properties.¹⁴ The carbodiimide molecule has two centers of reactivity: the central carbon atom is electrophilic, and the

terminal nitrogen atom is electron-rich. By far the most important reactions involve nucleophilic attack of a reagent E– Nu that may add by stepwise or concerted paths.¹⁵ Prompted by the advancement of carbodiimide chemistry, we envision that N-[2-(1-alkynyl)phenyl]carbodiimides would be powerful intermediates for the production of N-heterocycles with privileged structures. Therefore, we started to study the reactions of N-[2-(1-alkynyl)phenyl]carbodiimides 1 with 2isocyanoacetates 2, with an aim to enrich our natural productlike libraries of quinazolines 3. To our surprise, the desired quinazoline 3 was not observed, and an unexpected compound 4 was isolated instead (Scheme 1).

We reasoned that in the presence of a base, the formal [3 + 2] cycloaddition of 2-isocyanoacetate 2 to a carbodiimide moiety in compound 1 would occur first to produce intermediate A. Intermediate A could then undergo protonolysis and isomerization to afford intermediate C. Finally, an intramolecular cyclization of intermediate C would happen to give the target product 3 (Scheme 2).

To optimize the transformation, a set of experiments were subsequently carried out using phenyl(2-phenylethynylphenyl)carbodiimide (1a) and ethyl 2-isocyanoacetate (2a) as model substrates, and the results are summarized in Table 1. As shown in Table 1, in the presence of DBU as a base, the reaction in acetonitrile at 80 °C gave the desired ethyl 1-phenyl-5-(2phenyl-1*H*-indol-1-yl)-1*H*-imidazole-4-carboxylate 3a in 24% yield (Table 1, entry 1). Next, a series of bases were examined. It is evident that Cs₂CO₃ was the best choice, leading to the desired product 3a in 32% yield (Table 1, entry 2). The structure of 3a was further confirmed by X-ray diffraction analysis (see Figure 1 in the Supporting Information). Taking into account the activation of the acetylenic bond, different Lewis acids as the catalyst in the presence of Cs_2CO_3 were screened in acetonitrile at 80 °C, but the results were not satisfactory (Table 1, entries 11-14). In the absence of the

Received: November 18, 2013 Published: March 20, 2014

Scheme 1

Scheme 2. Proposed Mechanism for the Generation of Indol-1-yl-1*H*-imidazole-4-carboxylates via Base-Promoted Tandem Reaction of *N*-[2-(1-Alkynyl)phenyl]carbodiimides 1 and 2-Isocyanoacetates 2

base, the reaction failed when catalytic CuI was added into the reaction (Table 1, entry 15). Switching to other Lewis acids, such as $PdCl_2$, $Pd(OAc)_2$, $FeCl_3$, etc. also did not produce the desired outcome (Table 1, entries 16–19). We next examined the solvent effect (Table 1, entries 20–23). When DMSO was employed as the solvent, the yield increased to 42% (Table 1, entry 23). When the reaction temperature was reduced to 60 °C, the reaction was completed with a yield of 55% (Table 1, entry 26). The highest yield of 62% was obtained when Cs_2CO_3 in DMSO at 40 °C was used (Table 1, entry 25).

Under the optimized reaction conditions $[Cs_2CO_3]$ (2.0 equiv), DMSO, 40 °C], the scope of the reactions was investigated, and the results are shown in Table 2. All reactions proceeded smoothly, leading to the desired indolyl imidazole derivatives in moderate to good yields. For example, when we changed ethyl 2-isocyanoacetate (2a) to tert-butyl 2-isocyanoacetate (2b) or 1-isocyanomethanesulfonyl-4-methylbenzene (TosMIC, 2c),¹⁶ the corresponding products 3b and 3c were obtained in 71% and 76% yield, respectively (Table 2, entries 2 and 3). The reaction worked well when the R^2 group in the substrate N-[2-(1-alkynyl)phenyl]carbodiimides 1 was an electron-rich or electron-deficient aryl group (Table 2, entries 4-6). To our surprise, when the R^2 group in the substrate N-[2-(1-alkynyl)phenyl]carbodiimides 1 was an alkyl group such as n-butyl or n-hexyl, the desired products were not obtained. However, when the R² group was a cyclopropyl group, the desired product 3g was obtained in 60% yield (Table 2, entry 7). For the \mathbb{R}^3 group in the N-[2-(1-alkynyl)phenyl]carbodiimides 1, both aryl and alkyl groups were all tolerated. For instance, the reaction of isocyanoacetate 2a and compound 1 with a tolyl group attached on the position of R^3 gave rise to the corresponding product 3k in 64% yield (Table 2, entry 11). While the R^3 position was changed to an *n*-butyl group, the expected product 31 was afforded in 60% yield (Table 2, entry

12). Reactions of ethyl 2-isocyanoacetate **2a** and *N*-[2-(1-alkynyl)phenyl]carbodiimides **1** with different substitutions on the aromatic ring were studied. As expected, all reactions proceeded smoothly to furnish the desired products in good yields (such as **3m** in 60% yield, **3n** in 61% yield). The products **3i** and **3j** were obtained in lower yields due to the formation of byproducts unidentified.

It was found that when TosMIC (2c) reacted with N-[2-(1alkynyl)phenyl]carbodiimide 1 under the same conditions, the yield dramatically increased. Therefore, the tandem reactions of TosMIC (2c) with various N-[2-(1-alkynyl)phenyl]carbodiimides 1 were investigated. Generally the reactions proceeded successfully under the optimal conditions to afford the corresponding indolyl imidazole derivatives 3o-3x in good yields (Table 2, entries 15-24). For instance, 1-(4fluorophenyl)-5-(2-phenyl-1*H*-indol-1-yl)-4-(*p*-tolylsulfonyl)-1H-imidazole 3r was obtained in 85% yield, and 5-(5-methyl-2phenyl-1H-indol-1-yl)-1-phenyl-4-(p-tolylsulfonyl)-1H-imidazole 3w was obtained in 81% yield. The reaction also proceeded effectively when the R^2 group in the N-[2-(1-alkynyl)phenyl]carbodiimides 1 was an electron-rich or electron-deficient aryl group (Table 2, entries 15-17). For the R^3 group in the substrate 1, both aryl and alkyl groups were well tolerated.

In conclusion, we have described an efficient route for the construction of indolyl imidazole derivatives via a basepromoted cascade reaction of N-[2-(1-alkynyl)phenyl]carbodiimides with isocyanides. The reaction could be performed under mild conditions with high efficiency. In the reaction, a [3 + 2] cycloaddition of isocyanide to carbodiimide and the intramolecular cyclization are involved. More transformations incorporating carbodiimides and 2-isocyanoacetates to synthesize biologically interesting molecules is ongoing in our laboratory, and the results will be reported in due course. Table 1. Initial Studies for the Tandem Reaction ofPhenyl(2-phenylethynylphenyl)carbodiimide 1a with Ethyl2-Isocyanoacetate $2a^a$

\land	Ph	~	Lewis acid or base		Ph	
Ũ	`N ^{≝C^{≝N}`Ph}	I´ `COOEt	solvent, te	emp.	EtOOC-	N ^{Ph}
1 a		2a			3a	
entry	Lewis acid b	base	solvent	T (°C)	<i>t</i> (h)	yield (%) ^c
1		DBU	CH ₃ CN	80	12	24
2		Cs_2CO_3	CH ₃ CN	80	12	32
3		K_3PO_4	CH ₃ CN	80	12	25
4		DABCO	CH ₃ CN	80	24	trace
5		Na_2CO_3	CH ₃ CN	80	24	trace
6		K ₂ CO ₃	CH ₃ CN	80	24	trace
7		n-BuLi	CH ₃ CN	80	20	7
8		NaOH	CH ₃ CN	80	20	10
9		КОН	CH ₃ CN	80	20	11
10		t-BuOK	CH ₃ CN	80	20	8
11	CuI	Cs ₂ CO ₃	CH ₃ CN	80	12	32
12	PdCl ₂	Cs ₂ CO ₃	CH ₃ CN	80	12	32
13	$Pd(OAc)_2$	Cs_2CO_3	CH ₃ CN	80	12	32
14	FeCl ₃	Cs ₂ CO ₃	CH ₃ CN	80	12	32
15	CuI		CH ₃ CN	80	24	NR
16	PdCl ₂		CH ₃ CN	80	24	trace
17	$Pd(OAc)_2$		CH ₃ CN	80	24	trace
18	FeCl ₃		CH ₃ CN	80	24	trace
19	$CuI + PdCl_2$		CH ₃ CN	80	24	trace
20		Cs_2CO_3	DMF	80	24	trace
21		Cs_2CO_3	DCE	80	24	trace
22		Cs_2CO_3	Toluene	80	24	trace
23		Cs_2CO_3	$DMSO^d$	80	12	42
24		Cs_2CO_3	DMSO	25	24	25
25		Cs ₂ CO ₃	DMSO	40	12	62
26		Cs ₂ CO ₃	DMSO	60	12	55
27		Cs_2CO_3	DMSO	100	3	40

^{*a*}Reaction was performed with **1a** (0.2 mmol), **2a** (0.4 mmol), and base (0.4 mmol) in solvent (2 mL). ^{*b*}0.1 equiv of Lewis acid catalyst was used. ^{*c*}Isolated yield based on phenyl(2-phenylethynylphenyl)carbodiimide **1a**. ^{*d*}Different bases such as *t*-BuOK, KOH, K₃PO₄, K₂CO₃, and DBU were tested with DMSO as the solvent, and Cs₂CO₃ was also found to be the best choice.

EXPERIMENTAL SECTION

General Methods. ¹H and ¹³C NMR spectra were recorded with CDCl₃ as the solvent and TMS as an internal standard. The starting *N*-[2-(1-alkynyl)phenyl]carbodiimides were prepared according to the reported literature procedure.¹⁷ The other chemicals were purchased from commercial sources and used as received, unless otherwise noted.

General Procedure for the Synthesis of Indolyl Imidazole Derivatives via a Tandem Reaction of *N*-[2-(1-Alkynyl)phenyl]carbodiimides 1 with Isocyanides 2. A mixture of *N*-[2-(1alkynyl)phenyl]carbodiimide 1a (0.2 mmol), 2-isocyanoacetate 2a (0.4 mmol), and Cs_2CO_3 (0.4 mmol) in DMSO (2.0 mL) was stirred at 40 °C for 12 h. After completion of reaction as indicated by TLC, the mixture was concentrated and directly purified by flash column chromatography (EtOAc/petroleum ether, 1:2) to give the desired product 3a.

Ethyl 1-Phenyl-5-(2-phenyl-1*H***-indol-1-yl)-1***H***-imidazole-4carboxylate (3a). Yellow solid (50.5 mg, 62%). Mp 185–187 °C. IR (KBr): 3052, 1720, 1600, 1577, 1500, 1454, 1154, 760 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \delta 7.65 (s, 1H), 7.61–7.63 (m, 1H), 7.17– 7.29 (m, SH), 7.10–7.13 (m, 2H), 7.02–7.06 (m, 2H), 6.84–6.86 (m,** 2H), 6.58 (s, 1H), 6.31–6.33 (m, 2H), 4.13–4.29 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 140.4, 139.2, 135.9, 133.7, 131.5, 129.3, 129.1, 128.7, 128.6, 128.3, 127.8, 127.7, 123.8, 123.1, 121.5, 120.8, 111.0, 104.4, 60.8, 13.9. MS (EI, 70 eV) m/z: 407 [M]⁺. HRMS calcd for C₂₆H₂₂N₃O₂⁺ (M + H⁺): 408.1707, found 408.1701. Anal. Calcd for C₂₆H₂₁N₃O₂: C, 76.64; H, 5.19; N, 10.31. Found: C, 76.36; H, 5.24; N, 10.18.

tert-Butyl 1-Phenyl-5-(2-phenyl-1*H*-indol-1-yl)-1*H*-imidazole-4-carboxylate (3b). Yellow solid (61.8 mg, 71%). Mp 199– 201 °C. IR (KBr): 3052, 2973, 1721, 1598, 1569, 1501, 1457, 1410, 1153, 748 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.64 (s, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.11–7.27 (m, 5H), 7.11–7.14 (m, 2H), 7.01–7.05 (m, 2H), 6.86 (d, *J* = 7.6 Hz, 2H), 6.56 (s, 1H), 6.32 (d, *J* = 8.0 Hz, 2H), 1.13 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 140.0, 139.3, 135.8, 133.7, 131.6, 130.5, 129.8, 129.2, 128.6, 128.5, 128.3, 127.7, 123.9, 122.9, 121.3, 120.7, 111.0, 103.8, 81.1, 27.6. MS (EI, 70 eV) *m/z*: 435 [M]⁺. HRMS calcd for C₂₈H₂₆N₃O₂⁺ (M + H⁺): 436.2020, found 436.2009. Anal. Calcd for C₂₈H₂₆N₃O₂: C, 77.22; H, 5.79; N, 9.65. Found: C, 76.97; H, 5.64; N, 9.49.

1-Phenyl-5-(2-phenyl-1*H***-indol-1-yl)-4-(***p***-tolylsulfonyl)-1***H***-imidazole (3c).** Yellow solid (74.4 mg, 76%). Mp 175–177 °C. IR (KBr): 2920, 1596, 1566, 1502, 1324, 1151, 1082, 761 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.82 (d, *J* = 8.0 Hz, 2H), 7.68 (s, 1H), 7.61 (d, *J* = 6.8 Hz, 1H), 7.16–7.26 (m, 6H), 7.00–7.10 (m, SH), 6.77 (d, *J* = 7.6 Hz, 2H), 6.60 (s, 1H), 6.26 (d, *J* = 7.6 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 140.9, 140.0, 137.4, 137.3, 136.2, 133.0, 131.1, 129.6, 129.3, 129.1, 128.7, 128.4, 128.2, 127.9, 127.7, 127.1, 124.0, 123.2, 121.8, 120.9, 111.3, 105.1, 21.6. MS (EI, 70 eV) *m/z*: 489 [M]⁺. HRMS calcd for C₃₀H₂₄N₃O₂S⁺ (M + H⁺): 490.1584, found 490.1571. Anal. Calcd for C₃₀H₂₃N₃O₂S: C, 73.60; H, 4.74; N, 8.58. Found: C, 73.42; H, 4.96; N, 8.39.

Ethyl 5-[2-(4-Chlorophenyl)-1*H***-indol-1-yl]-1-phenyl-1***H***-imidazole-4-carboxylate (3d). Yellow solid (50.4 mg, 57%). Mp 168–169 °C. IR (KBr): 3054, 1721, 1637, 1567, 1500, 1451, 1152, 802, 766 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): \delta 7.68 (s, 1H), 7.62 (d,** *J* **= 7.6 Hz, 1H), 7.21–7.30 (m, 4H), 7.06–7.12 (m, 4H), 6.79 (d,** *J* **= 8.8 Hz, 2H), 6.58 (s, 1H), 6.37 (d,** *J* **= 7.6 Hz, 2H), 4.15–4.30 (m, 2H), 1.03 (t,** *J* **= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 161.5, 139.3, 139.0, 136.0, 133.9, 133.6, 130.5, 130.0, 129.4, 129.2, 128.9, 128.8, 128.5, 123.8, 123.5, 121.7, 121.0, 111.0, 104.8, 60.8, 13.9. MS (EI, 70 eV)** *m/z***: 441 [M]⁺. HRMS calcd for C₂₆H₂₁ClN₃O₂⁺ (M + H⁺): 442.1317, found 442.1305. Anal. Calcd for C₂₆H₂₀ClN₃O₂: C, 70.66; H, 4.56; N, 9.50. Found: C, 70.44; H, 4.65; N, 9.33.**

Ethyl 5-[2-(4-Methoxyphenyl)-1*H***-indol-1-yl]-1-phenyl-1***H***imidazole-4-carboxylate (3e). Yellow solid (57.7 mg, 66%). Mp 172–174 °C. IR (KBr): 3050, 2977, 1725, 1611, 1598, 1580, 1501, 1455, 1250, 1176, 836, 751 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 1H), 7.58–7.60 (m, 1H), 7.18–7.24 (m, 4H), 7.07 (t,** *J* **= 8.0 Hz, 2H), 6.79 (d,** *J* **= 8.8 Hz, 2H), 6.66 (d,** *J* **= 8.4 Hz, 2H), 6.50 (s, 1H), 6.38 (d,** *J* **= 7.6 Hz, 2H), 4.13–4.29 (m, 2H), 3.77 (s, 3H), 1.01 (t,** *J* **= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 159.3, 140.3, 139.1, 135.9, 133.7, 131.0, 129.3, 129.0, 128.8, 128.6, 124.1, 123.9, 122.8, 121.4, 120.6, 113.7, 110.8, 103.6, 60.7, 55.3, 13.9. MS (EI, 70 eV)** *m/z***: 437 [M]⁺. HRMS calcd for C₂₇H₂₄N₃O₃⁺ (M + H⁺): 438.1812, found 438.1801. Anal. Calcd for C₂₇H₂₄N₃O₃: C, 74.13; H, 5.30; N, 9.60. Found: C, 73.89; H, 5.17; N, 9.43.**

Ethyl 5-[2-(*p***-Tolyl)-1***H***-indol-1-yl]-1-phenyl-1***H***-imidazole-4carboxylate (3f). Yellow solid (57.3 mg, 68%). Mp 174–176 °C. IR (KBr): 2952, 2923, 2854, 1727, 1597, 1570, 1500, 1455, 1248, 1171, 803, 752 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.70 (d,** *J* **= 7.8 Hz, 1H), 7.28–7.35 (m, 4H), 7.15 (t,** *J* **= 7.6 Hz, 2H), 7.04 (d,** *J* **= 7.8 Hz, 2H), 6.86 (d,** *J* **= 7.8 Hz, 2H), 6.65 (s, 1H), 6.48 (d,** *J* **= 7.6 Hz, 2H), 4.23–4.37 (m, 2H), 2.40 (s, 3H), 1.09 (t,** *J* **= 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 140.6, 139.2, 137.7, 136.1, 135.9, 133.7, 131.0, 129.3, 129.0, 128.8, 128.7, 127.6, 123.9, 120.8, 120.7, 111.0, 104.1, 104.0, 60.8, 21.3, 13.9. MS (EI, 70 eV)** *m/z***: 421 [M]⁺. HRMS calcd for C₂₇H₂₄N₃O₂⁺ (M + H⁺): 422.1863, found 422.1843. Anal. Calcd for C₂₇H₂₄N₃O₂: C, 76.94; H, 5.50; N, 9.97. Found: C, 76.69; H, 5.27; N, 9.78.** Table 2. Synthesis of Indolyl Imidazole Derivatives via a Tandem Reaction of N-[2-(1-Alkynyl)phenyl] carbodiimides 1 with Isocyanides 2^{a}

		R^{1} R^{2} R^{2} R^{2} R^{2} R^{3}	+ $CN = R^4$ CS_2Cd DMSO, 4 2a: $R^4 = COOEt$ 2b: $R^4 = COOBu^t$ 2c: $R^4 = Ts$	$\begin{array}{c} D_3 \\ \hline D_1 \circ C \\ \hline \\ R^4 \\ \\$	2 R ³	
entry	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	product	yield $(\%)^b$
1	Н	Ph	Ph	COOEt	- 3a	62
2	Н	Ph	Ph	$COOBu^t$	3b	71
3	Н	Ph	Ph	Ts	3c	76
4	Н	4-ClC ₆ H ₄	Ph	COOEt	3d	57
5	Н	4-MeOC ₆ H ₄	Ph	COOEt	3e	66
6	Н	4-MeC ₆ H ₄	Ph	COOEt	3f	68
7	Н	cyclopropyl	Ph	COOEt	3g	60
8	Н	Ph	$4-FC_6H_4$	COOEt	3h	65
9	Н	Ph	$4-O_2NC_6H_4$	COOEt	3i	51
10	Н	Ph	4-MeOC ₆ H ₄	COOEt	3j	47
11	Н	Ph	$4 - MeC_6H_4$	COOEt	3k	64
12	Н	Ph	$n-C_4H_9$	COOEt	31	60
13	Me	Ph	Ph	COOEt	3m	60
14	Cl	Ph	Ph	COOEt	3n	61
15	Н	4-ClC ₆ H ₄	Ph	Ts	30	76
16	Н	4-MeOC ₆ H ₄	Ph	Ts	3р	78
17	Н	4-MeC ₆ H ₄	Ph	Ts	3q	80
18	Н	Ph	$4-FC_6H_4$	Ts	3r	85
19	Н	Ph	4-MeOC ₆ H ₄	Ts	3s	65
20	Н	Ph	$4 - MeC_6H_4$	Ts	3t	67
21	Н	Ph	cyclohexyl	Ts	3u	77
22	Н	Ph	n-C ₄ H ₉	Ts	3v	70
23	Me	Ph	Ph	Ts	3w	81
24	Cl	Ph	Ph	Ts	3x	79
25	Н	4-ClC ₆ H ₄	Ph	COOBu^t	Зу	75

^{*a*}Reaction was performed with N-[2-(1-alkynyl)phenyl]carbodiimide 1 (0.2 mmol), isocyanide 2 (0.4 mmol), Cs₂CO₃ (0.4 mmol) in DMSO (2 mL) at 40 °C for 12 h. ^{*b*}Isolated yield.

Ethyl 5-(2-Cyclopropyl-1*H***-indol-1-yl)-1-phenyl-1***H***-imidazole-4-carboxylate (3g). Yellow solid (44.6 mg, 60%). Mp 117– 119 °C. IR (KBr): 2980, 1731, 1597, 1583, 1499, 1458, 1249, 1166, 747 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): \delta 7.95 (s, 1H), 7.46–7.48 (m, 1H), 7.26–7.30 (m, 3H), 7.06–7.12 (m, 4H), 6.98–7.00 (m, 1H), 6.10 (s, 1H), 4.00–4.14 (m, 2H), 1.33–1.38 (m, 1H), 0.86–0.89 (t,** *J* **= 7.2 Hz, 3H), 0.70–0.75 (m, 1H), 0.62–0.67 (m, 1H), 0.53–0.60 (m, 1H), 0.16–0.22 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): \delta 161.4, 144.1, 139.3, 136.4, 134.3, 129.8, 128.9, 128.6, 123.9, 122.1, 120.9, 120.2, 114.0, 109.7, 99.5, 60.5, 13.7, 7.9, 7.4, 6.4. MS (EI, 70 eV)** *m/z***: 371 [M]⁺. HRMS calcd for C₂₃H₂₂N₃O₂⁺ (M + H⁺): 372.1707, found 372.1690. Anal. Calcd for C₂₃H₂₁N₃O₂: C, 74.38; H, 5.70; N, 11.31. Found: C, 74.13; H, 5.48; N, 11.16.**

Ethyl 1-(4-Fluorophenyl)-5-(2-phenyl-1*H***-indol-1-yl)-1***H***-imidazole-4-carboxylate (3h). Yellow solid (55.3 mg, 65%). Mp 203–205 °C. IR (KBr): 3051, 2977, 1723, 1601, 1510, 1455, 1222, 1162, 841, 749 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \delta 7.62 (d,** *J* **= 4.8 Hz, 1H), 7.61 (s, 1H), 7.13–7.28 (m, 6H), 6.90 (d,** *J* **= 7.2 Hz, 2H), 6.73 (t,** *J* **= 8.6 Hz, 2H), 6.60 (s, 1H), 6.25–6.29 (m, 2H), 4.14–4.30 (m, 2H), 1.00 (t,** *J* **= 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 162.3 (d, ¹***J***_{CF} = 247 Hz), 161.5, 140.1, 139.2, 135.9, 131.5, 130.9, 129.6, 129.1, 128.7, 128.4, 127.9, 127.6, 125.9 (d, ³***J***_{CF} = 8 Hz), 123.3, 121.7, 120.9, 116.3 (d, ²***J***_{CF} = 23 Hz), 110.9, 104.5, 60.8, 13.8. MS (EI, 70 eV)** *m/z***: 425 [M]⁺. HRMS calcd for C₂₆H₂₁FN₃O₂⁺ (M + H⁺): 426.1612, found 426.1598. Anal. Calcd for C₂₆H₂₀FN₃O₂: C, 73.40; H, 4.74; N, 9.87. Found: C, 73.18; H, 4.51; N, 9.69.**

Ethyl 1-(4-Nitrophenyl)-5-(2-phenyl-1H-indol-1-yl)-1H-imidazole-4-carboxylate (3i). Yellow solid (46.2 mg, 51%). Mp 208–210 °C. IR (KBr): 3053, 2977, 1721, 1599, 1525, 1502, 1347, 1252, 1179, 752 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.62 (s, 1H), 7.61 (d, *J* = 9.2 Hz, 1H), 7.12–7.27 (m, 6H), 6.90 (d, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 2H), 6.60 (s, 1H), 6.24 (d, *J* = 8.0 Hz, 2H), 4.10– 4.28 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 156.1, 147.2, 139.7, 138.8, 138.7, 135.3, 131.1, 128.7, 128.6, 128.1, 127.5, 124.7, 124.4, 123.6, 122.1, 121.2, 110.9, 105.0, 61.1, 13.8. MS (EI, 70 eV) *m/z*: 452 [M]⁺. HRMS calcd for C₂₆H₂₁N₄O₄⁺ (M + H⁺): 453.1557, found 453.1536. Anal. Calcd for C₂₆H₂₀N₄O₄: C, 69.02; H, 4.46; N, 12.38. Found: C, 68.79; H, 4.27; N, 12.25.

Ethyl 1-(4-Methoxyphenyl)-5-(2-phenyl-1*H***-indol-1-yl)-1***H***imidazole-4-carboxylate (3j). Yellow solid (41.1 mg, 47%). Mp 157–159 °C. IR (KBr): 2924, 1720, 1593, 1516, 1456, 1251, 1178, 839, 750 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): \delta 7.64 (d,** *J* **= 8.4 Hz, 1H), 7.63 (s, 1H), 7.17–7.29 (m, 6H), 6.96 (d,** *J* **= 7.2 Hz, 2H), 6.63 (s, 1H), 6.57 (d,** *J* **= 8.4 Hz, 2H), 6.29 (d,** *J* **= 8.8 Hz, 2H), 4.16–4.30 (m, 2H), 3.74 (s, 3H), 1.03 (t,** *J* **= 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 161.6, 142.2, 136.1, 131.6, 129.0, 128.7, 128.3, 127.7, 125.3, 123.1, 121.5, 120.8, 114.3, 110.9, 104.3, 60.7, 55.5, 13.8. MS (EI, 70 eV)** *m/z***: 437 [M]⁺. HRMS calcd for C₂₇H₂₄N₃O₃⁺ (M + H⁺): 438.1812, found 438.1796. Anal. Calcd for C₂₇H₂₃N₃O₃: C, 74.13; H, 5.30; N, 9.60. Found: C, 73.87; H, 5.08; N, 9.47.**

Ethyl 5-(2-Phenyl-1*H***-indol-1-yl)-1-(***p***-tolyl)-1***H***-imidazole-4carboxylate (3k). Yellow solid (54.0 mg, 64%). Mp 186–188 °C. IR (KBr): 3049, 2977, 1723, 1564, 1516, 1442, 1248, 1161, 762 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \delta 7.62 (s, 1H), 7.61 (d,** *J* **= 9.2 Hz, 1H), 7.12–7.27 (m, 6H), 6.90 (d,** *J* **= 7.2 Hz, 2H), 6.84 (d,** *J* **= 8.0 Hz, 2H), 6.60 (s, 1H), 6.24 (d,** *J* **= 8.0 Hz, 2H), 4.12–4.26 (m, 2H), 2.24 (s, 3H), 0.99 (t,** *J* **= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 161.6, 140.5, 139.4, 138.8, 136.1, 131.6, 131.1, 130.9, 129.8, 129.1, 128.7,**

The Journal of Organic Chemistry

128.3, 127.7, 123.7, 123.1, 121.5, 120.8, 110.9, 104.3, 60.7, 21.0, 13.8. MS (EI, 70 eV) m/z: 421 [M]⁺. HRMS calcd for $C_{27}H_{24}N_3O_2^+$ (M + H⁺): 422.1863, found 422.1846. Anal. Calcd for $C_{27}H_{23}N_3O_2$: C, 76.94; H, 5.50; N, 9.97. Found: C, 76.75; H, 5.23; N, 9.79.

Ethyl 1-Butyl-5-(2-phenyl-1*H***-indol-1-yl)-1***H***-imidazole-4carboxylate (3l). Yellow solid (46.5 mg, 60%). Mp 74–76 °C. IR (KBr): 3059, 2957, 2870, 1700, 1588, 1563, 1420, 1267, 1186, 1073, 765 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): \delta 7.90 (s, 1H), 7.76–7.81 (m, 3H), 7.52–7.54 (m, 2H), 7.46 (t,** *J* **= 7.8 Hz, 3H), 7.36–7.41 (m, 1H), 7.30–7.32 (m, 1H), 6.57 (s, 1H), 4.46–4.52 (m, 2H), 3.82 (s, 2H), 1.49–1.52 (m, 3H), 1.29–1.32 (m, 2H), 0.94–0.99 (m, 2H), 0.66 (t,** *J* **= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 162.3, 139.6, 135.1, 135.1, 129.2, 128.7, 128.6, 127.4, 127.0, 125.8, 124.2, 115.7, 115.4, 115.1, 60.3, 54.9, 30.2, 19.7, 14.7, 13.6. MS (EI, 70 eV)** *m/z***: 387 [M]⁺. HRMS calcd for C₂₄H₂₆N₃O₂⁺ (M + H⁺): 388.2020, found 388.2009. Anal. Calcd for C₂₄H₂₅N₃O₂: C, 74.40; H, 6.50; N, 10.84. Found: C, 74.16; H, 6.31; N, 10.69.**

Ethyl 5-(5-Methyl-2-phenyl-1*H***-indol-1-yl)-1-phenyl-1***H***-imidazole-4-carboxylate (3m). Yellow solid (50.6 mg, 60%). Mp 182–184 °C. IR (KBr): 3045, 2976, 1727, 1596, 1568, 1501, 1416, 1249, 1170, 806, 758 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \delta 7.65 (s, 1H), 7.41 (s, 1H), 7.16–7.22 (m, 2H), 7.09–7.13 (m, 4H), 7.03–7.07 (m, 2H), 6.84–6.86 (m, 2H), 6.52 (s, 1H), 6.32–6.34 (m, 2H), 4.19–4.29 (m, 2H), 2.48 (s, 3H), 1.06 (t,** *J* **= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 161.6, 140.4, 137.6, 135.8, 133.7, 131.7, 131.1, 130.8, 129.2, 129.0, 128.6, 128.2, 127.6, 127.6, 124.7, 123.8, 120.6, 110.6, 104.1, 60.7, 21.5, 13.9. MS (EI, 70 eV)** *m/z***: 421 [M]⁺. HRMS calcd for C₂₇H₂₄N₃O₂⁺ (M + H⁺): 422.1863, found 422.1841. Anal. Calcd for C₂₇H₂₃N₃O₂: C, 76.94; H, 5.50; N, 9.97. Found: C, 76.76; H, 5.71; N, 9.78.**

Ethyl 5-(5-Chloro-2-phenyl-1*H***-indol-1-yl)-1-phenyl-1***H***-imidazole-4-carboxylate (3n). Yellow solid (53.9 mg, 61%). Mp 183–185 °C. IR (KBr): 3045, 1721, 1598, 1567, 1499, 1451, 1245, 1172, 1154, 760 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): \delta 7.65 (s, 1H), 7.59 (d,** *J* **= 2.0 Hz, 1H), 7.20–7.25 (m, 3H), 7.12–7.16 (m, 3H), 7.05–7.09 (m, 2H), 6.83–6.86 (m, 2H), 6.53 (s, 1H), 6.30–6.33 (m, 2H), 4.20–4.30 (m, 2H), 1.08 (t,** *J* **= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 161.4, 141.8, 137.6, 136.0, 133.5, 131.7, 131.0, 130.4, 129.7, 129.4, 128.8, 128.4, 128.1, 127.7, 127.2, 123.8, 123.4, 120.3, 112.0, 103.8, 60.9, 14.0. MS (EI, 70 eV)** *m/z***: 441 [M]⁺. HRMS calcd for C₂₆H₂₁ClN₃O₂⁺ (M + H⁺): 442.1317, found 442.1301. Anal. Calcd for C₂₆H₂₀ClN₃O₂: C, 70.66; H, 4.56; N, 9.50. Found: C, 70.41; H, 4.32; N, 9.39.**

1-Phenyl-5-[2-(4-chlorophenyl)-1*H***-indol-1-yl]-4-(***p***-tolylsulfonyl)-1***H***-imidazole (30). Yellow solid (79.7 mg, 76%). Mp 176–178 °C. IR (KBr): 2919, 1595, 1498, 1417, 1394, 1185, 892, 714 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d,** *J* **= 8.0 Hz, 2H), 7.71 (s, 1H), 7.61 (d,** *J* **= 6.8 Hz, 1H), 7.52–7.54 (m, 1H), 7.18–7.28 (m, 5H), 7.04–7.08 (m, 4H), 6.73 (d,** *J* **= 8.4 Hz, 2H), 6.60 (s, 1H), 6.33 (d,** *J* **= 7.6 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 140.1, 139.7, 138.4, 137.7, 137.2, 136.4, 134.0, 133.0, 132.3, 129.8, 129.7, 129.0, 128.9, 128.6, 128.5, 128.4, 127.8, 124.0, 121.1, 121.0, 111.2, 105.6, 21.7. MS (EI, 70 eV)** *m***/***z***: 523 [M]⁺. HRMS calcd for C_{30}H_{23}ClN_3O_2S^+ (M + H⁺): 524.1194, found 524.1193. Anal. Calcd for C_{30}H_{22}ClN_3O_2S: C, 68.76; H, 4.23; N, 8.01. Found: C, 68.47; H, 4.46; N, 7.82.**

1-Phenyl-5-[2-(4-methoxyphenyl)-1*H***-indol-1-yl]-4-(***p***-tolyl-sulfonyl)-1***H***-imidazole (3p). Yellow solid (81.1 mg, 78%). Mp 222–224 °C. IR (KBr): 2922, 1647, 1596, 1500, 1438, 1384, 1150, 707, 676 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d,** *J* **= 8.0 Hz, 2H), 7.68 (s, 1H), 7.58 (d,** *J* **= 7.6 Hz, 1H), 7.16–7.28 (m, 5H), 7.00–7.07 (m, 3H), 6.73 (d,** *J* **= 8.4 Hz, 2H), 6.61 (d,** *J* **= 8.4 Hz, 2H), 6.52 (s, 1H), 6.32 (d,** *J* **= 8.4 Hz, 2H), 3.76 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 140.8, 139.8, 137.4, 137.2, 133.0, 129.7, 129.6, 129.3, 129.1, 128.7, 128.4, 128.2, 128.1, 124.0, 123.5, 113.7, 113.6, 111.0, 104.2, 104.1, 55.3, 21.6. MS (EI, 70 eV)** *m***/***z***: 519 [M]⁺. HRMS calcd for C₃₁H₂₆N₃O₃S⁺ (M + H⁺): 520.1689, found 520.1685. Anal. Calcd for C₃₁H₂₅N₃O₃S: C, 71.66; H, 4.85; N, 8.08. Found: C, 71.37; H, 4.99; N, 7.87.**

1-Phenyl-5-[2-(*p***-tolyl)-1***H***-indol-1-yl]-4-(***p***-tolylsulfonyl)-1***H***-imidazole (3q). Yellow solid (80.6 mg, 80%). Mp 173–174 °C. IR (KBr): 2928, 1611, 1599, 1501, 1455, 1320, 1250, 1176, 751 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \delta 7.80 (d,** *J* **= 8.4 Hz, 2H), 7.67 (s, 1H), 7.58–7.60 (m, 1H), 7.18–7.26 (m, 5H), 7.02–7.07 (m, 3H), 6.88 (d,** *J* **= 7.6 Hz, 2H), 6.69 (d,** *J* **= 8.0 Hz, 2H), 6.56 (s, 1H), 6.31–6.33 (m, 2H), 2.40 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 144.5, 141.2, 140.0, 137.8, 137.5, 137.4, 136.2, 133.2, 130.0, 129.6, 129.3, 129.1, 129.0, 128.8, 128.4, 128.3, 127.7, 124.1, 123.1, 121.8, 120.8, 111.2, 104.7, 21.7, 21.2. MS (EI, 70 eV)** *m/z***: 503 [M]⁺. HRMS calcd for C₃₁H₂₆N₃O₂S⁺ (M + H⁺): 504.1740, found 504.1718. Anal. Calcd for C₃₁H₂₅N₃O₂S: C, 73.93; H, 5.00; N, 8.34. Found: C, 73.77; H, 5.12; N, 8.18.**

1-(4-Fluorophenyl)-5-(2-phenyl-1*H***-indol-1-yl)-4-(***p***-tolylsulfonyl)-1***H***-imidazole (3***r***). Yellow solid (86.3 mg, 85%). Mp 213-215 °C. IR (KBr): 2953, 2924, 2854, 1599, 1580, 1462, 1456, 1377, 1261, 802 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d,** *J* **= 8.0 Hz, 2H), 7.71 (d,** *J* **= 8.0 Hz, 1H), 7.59 (s, 1H), 7.54 (d,** *J* **= 7.2 Hz, 1H), 7.44–7.49 (m, 1H), 7.22 (d,** *J* **= 8.0 Hz, 1H), 7.11–7.17 (m, 3H), 6.99–7.03 (m, 3H), 6.73 (d,** *J* **= 7.2 Hz, 2H), 6.64 (t,** *J* **= 8.4 Hz, 2H), 6.55 (s, 1H), 6.12–6.15 (m, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 162.4 (d, ¹***J***_{CF} = 249 Hz), 144.8, 140.6, 139.9, 137.2, 137.0, 136.3 (d, ²***J***_{CF} = 25 Hz), 130.9, 129.8, 129.5, 128.9, 128.5, 128.3, 128.1 (d, ³***J***_{CF} = 7 Hz), 127.5, 127.3, 126.0, 121.0, 120.8, 116.3, 111.1, 105.1, 104.9, 21.6. MS (EI, 70 eV)** *m/z***: 507 [M]⁺. HRMS calcd for C₃₀H₂₃FN₃O₂S⁺ (M + H⁺): 508.1490, found 508.1478. Anal. Calcd for C₃₀H₂₂FN₃O₂S: C, 70.99; H, 4.37; N, 8.28. Found: C, 70.75; H, 4.56; N, 8.09.**

1-(4-Methoxyphenyl)-5-(2-phenyl-1*H***-indol-1-yl)-4-(***p***-tolyl-sulfonyl)-1***H***-imidazole (3s). Yellow solid (67.5 mg, 65%). Mp 162–164 °C. IR (KBr): 2963, 2935, 1595, 1567, 1511, 1454, 1325, 1251, 1147, 808 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d,** *J* **= 7.2 Hz, 2H), 7.71 (d,** *J* **= 8.0 Hz, 1H), 7.60 (s, 1H), 7.19–7.26 (m, 5H), 7.04–7.11 (m, 3H), 6.87 (d,** *J* **= 7.2 Hz, 2H), 6.62 (s, 1H), 6.50 (d,** *J* **= 8.0 Hz, 2H), 6.20 (d,** *J* **= 8.0 Hz, 2H), 3.66 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 141.0, 140.1, 137.4, 137.2, 136.6, 136.4, 131.2, 129.8, 129.6, 128.7, 128.5, 128.3, 128.1, 127.8, 125.8, 125.5, 121.9, 121.7, 121.0, 120.8, 114.4, 105.1, 55.5, 21.7. MS (EI, 70 eV)** *m/z***: 519 [M]⁺. HRMS calcd for C₃₁H₂₆N₃O₃S⁺ (M + H⁺): 520.1689, found 520.1688. Anal. Calcd for C₃₁H₂₅N₃O₃S: C, 71.66; H, 4.85; N, 8.08. Found: C, 71.42; H, 4.98; N, 7.92.**

1-(*p*-Tolyl)-5-(2-phenyl-1*H*-indol-1-yl)-4-(*p*-tolylsulfonyl)-1*H*-imidazole (3t). Yellow solid (67.5 mg, 67%). Mp 191–193 °C. IR (KBr): 2956, 2924, 1596, 1567, 1515, 1455, 1328, 1149, 815, 706 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.62 (s, 1H), 7.18–7.27 (m, 6H), 7.05–7.11 (m, 4H), 6.84 (t, *J* = 7.6 Hz, 3H), 6.62 (s, 1H), 6.19 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 141.0, 140.1, 139.4, 137.4, 136.4, 136.2, 131.2, 130.6, 130.1, 129.9, 129.8, 129.5, 128.7, 128.5, 128.4, 128.2, 127.8, 123.9, 121.0, 120.8, 105.1, 105.0, 21.7, 21.1. MS (EI, 70 eV) *m/z*: 503 [M]⁺. HRMS calcd for C₃₁H₂₆N₃O₂S⁺ (M + H⁺): 504.1740, found 504.1728. Anal. Calcd for C₃₁H₂₅N₃O₂S: C, 73.93; H, 5.00; N, 8.34. Found: C, 73.68; H, 4.79; N, 8.15.

1-Cyclohexyl-5-(2-phenyl-1*H***-indol-1-yl)-4-(***p***-tolylsulfonyl)-1***H***-imidazole (3u).** Yellow solid (76.3 mg, 77%). Mp 238–239 °C. IR (KBr): 2935, 2852, 1596, 1555, 1492, 1448, 1316, 1145, 749, 700 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 7.6 Hz, 2H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.88 (s, 1H), 7.66–7.68 (m, 1H), 7.41–7.45 (m, 2H), 7.26–7.39 (m, 6H), 6.74 (s, 1H), 3.81–3.87 (m, 1H), 2.37 (s, 3H), 2.04–2.07 (m, 1H), 1.55–1.57 (m, 1H), 1.37–1.43 (m, 3H), 1.16–1.26 (m, 2H), 0.83–0.98 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.7, 139.4, 138.3, 135.2, 132.4, 130.7, 130.0, 129.6, 128.9, 128.7, 128.5, 128.1, 127.9, 127.7, 126.4, 124.5, 115.2, 69.2, 31.5, 30.8, 25.8, 25.7, 25.3, 21.6. MS (EI, 70 eV) *m/z*: 495 [M]⁺. HRMS calcd for C₃₀H₃₀N₃O₂S⁺ (M + H⁺): 496.2053, found 496.2032. Anal. Calcd for C₃₀H₂₉N₃O₂S: C, 72.70; H, 5.90; N, 8.48. Found: C, 72.54; H, 5.65; N, 8.29.

1-Butyl-5-(2-phenyl-1H-indol-1-yl)-4-(p-tolylsulfonyl)-1H-imidazole (3v). Yellow solid (65.7 mg, 70%). Mp 131–133 °C. IR (KBr): 2959, 2925, 1626, 1588, 1557, 1493, 1317, 1302, 1142, 1086,

The Journal of Organic Chemistry

761 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 8.0 Hz, 2H), 7.87 (s, 1H), 7.80–7.82 (m, 2H), 7.75 (d, J = 7.2 Hz, 1H), 7.46–7.50 (m, 2H), 7.31–7.43 (m, 6H), 6.57 (s, 1H), 3.78 (s, 2H), 2.41 (s, 3H), 1.14–1.21 (m, 2H), 0.85–0.95 (m, 2H), 0.57 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 139.5, 137.0, 134.7, 134.3, 129.8, 129.6, 129.3, 129.1, 129.0, 128.7, 127.7, 127.5, 126.5, 125.5, 124.2, 116.8, 115.4, 115.3, 56.5, 30.5, 21.6, 19.6, 13.5. MS (EI, 70 eV) *m/z*: 469 [M]⁺. HRMS calcd for C₂₈H₂₈N₃O₂S⁺ (M + H⁺): 470.1897, found 470.1876. Anal. Calcd for C₂₈H₂₇N₃O₂S: C, 71.62; H, 5.80; N, 8.94. Found: C, 71.38; H, 5.58; N, 8.76.

5-(5-Methyl-2-phenyl-1*H***-indol-1-yl)-1-phenyl-4-(***p***-tolylsulfonyl)-1***H***-imidazole (3w). Yellow solid (81.6 mg, 81%). Mp 240–242 °C. IR (KBr): 3060, 1596, 1570, 1502, 1467, 1330, 1216, 1151, 1086, 810, 760 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \delta 7.83 (d,** *J* **= 8.4 Hz, 2H), 7.67 (s, 1H), 7.40 (s, 1H), 7.14–7.28 (m, 4H), 7.01–7.06 (m, 6H), 6.71–6.73 (m, 2H), 6.52 (s, 1H), 6.26–6.28 (m, 2H), 2.49 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 144.6, 140.9, 138.5, 137.4, 136.1, 133.2, 131.3, 131.2, 130.0, 129.6, 129.3, 129.1, 128.9, 128.4, 128.2, 127.7, 127.6, 127.1, 124.8, 123.9, 120.7, 111.0, 104.8, 21.6, 21.5. MS (EI, 70 eV)** *m/z***: 503 [M]⁺. HRMS calcd for C₃₁H₂₆N₃O₂S⁺ (M + H⁺): 504.1740, found 504.1731. Anal. Calcd for C₃₁H₂₅N₃O₂S: C, 73.93; H, 5.00; N, 8.34. Found: C, 73.65; H, 5.23; N, 8.16.**

5-(5-Chloro-2-phenyl-1*H***-indol-1-yl)-1-phenyl-4-(***p***-tolylsulfonyl)-1***H***-imidazole (3x). Yellow solid (82.8 mg, 79%). Mp 182–184 °C. IR (KBr): 2917, 1652, 1597, 1498, 1437, 1317, 1149, 710, 661 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): \delta 7.75 (s, 1H), 7.64 (d,** *J* **= 8.0 Hz, 2H), 7.49 (s, 1H), 7.21 (d,** *J* **= 7.8 Hz, 2H), 7.11–7.16 (m, 2H), 7.06 (d,** *J* **= 8.4 Hz, 1H), 6.93–7.01 (m, 5H), 6.67 (d,** *J* **= 7.6 Hz, 2H), 6.50 (s, 1H), 6.23(d,** *J* **= 7.6 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): \delta 144.5, 141.9, 137.9, 136.8, 136.5, 132.4, 131.9, 130.1, 129.4, 129.2, 128.1, 127.8, 127.1, 126.9, 126.8, 123.6, 123.0, 119.9, 112.0, 103.9, 21.3. MS (EI, 70 eV)** *m/z***: 523 [M]⁺. HRMS calcd for C₃₀H₂₃ClN₃O₂S⁺ (M + H⁺): 524.1194, found 524.1179. Anal. Calcd for C₃₀H₂₂ClN₃O₂S: C, 68.76; H, 4.23; N, 8.01. Found: C, 68.47; H, 4.51; N, 7.89.**

tert-Butyl 5-[2-(4-Chlorophenyl)-1*H*-indol-1-yl]-1-phenyl-1*H*-imidazole-4-carboxylate (3y). Yellow solid (70.5 mg, 75%). Mp 260–262 °C. IR (KBr): 2970, 1724, 1597, 1578, 1500, 1455, 1256, 1154, 840, 797 cm^{-1.1}H NMR (400 MHz, CDCl₃): δ 7.68 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.20–7.31 (m, 4H), 7.05–7.13 (m, 4H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.56 (s, 1H), 6.37 (d, *J* = 7.6 Hz, 2H), 1.14 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 139.4, 138.7, 136.0, 133.9, 133.7, 130.7, 130.1, 129.3, 128.9, 128.7, 128.5, 123.8, 123.3, 121.6, 120.9, 111.0, 104.3, 81.3, 27.7. MS (EI, 70 eV) *m/z*: 469 [M]⁺. HRMS calcd for C₂₈H₂₅ClN₃O₂⁺ (M + H⁺): 470.1630, found 470.1622. Anal. Calcd for C₂₈H₂₄ClN₃O₂: C, 71.56; H, 5.15; N, 8.94. Found: C, 71.35; H, 5.34; N, 8.78.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H and ¹³C NMR spectra for the products and X-ray crystal data of compound **3a**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Fax: (+86)-791-8812-0388. E-mail: mzcai@jxnu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Note

(1) (a) Sundberg, R. J. In *The Chemistry of Indoles*; Academic Press, New York, 1970. (b) Brown, R. K. In *Indoles*; Houlihan, W. J., Ed.; Wiley-Interscience: New York, 1972. (c) Sharma, V.; Kumar, P. D. *J. Heterocycl. Chem.* **2010**, 47, 491. (d) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. *Molecules* **2013**, *18*, 6620.

(2) For recent reviews on indole synthesis, see: (a) Marco, B.; Astrid, E. Angew. Chem., Int. Ed. 2009, 48, 9608. (b) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195. (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. React. 2012, 76, 281.

(3) Fischer, E.; Jourdan, F. Chem. Ber. 1883, 16, 2241.

(4) For selected examples of palladium-catalyzed synthesis of indoles, see: (a) Hegedus, L. S.; Allen, G. F.; Olsen, D. J. J. Am. Chem. Soc. **1980**, 102, 3583. (b) Kondo, Y.; Sakamoto, T.; Yamanaka, H. Heterocycles **1989**, 48, 1013. (c) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. **1991**, 113, 6689. (d) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. **1998**, 63, 7652. (e) Yasuhara, A.; Kaneko, M.; Sakamoto, T. Heterocycles **1998**, 48, 1793. (f) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. **2002**, 2671. (g) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Adv. Synth. Catal. **2006**, 348, 130. (h) Lu, B. Z.; Zhao, W.; Wei, H.-X.; Dufour, M.; Farina, V.; Senanayake, C. H. Org. Lett. **2006**, 8, 3271. (i) Han, X.; Lu, X. Org. Lett. **2010**, 12, 3336. (j) Álvarez, R.; Martínez, C.; Madich, Y.; Denis, J. G.; Aurrecoechea, J. M.; de Lera, A. R. Chem.—Eur. J. **2010**, 16, 12746.

(5) For selected examples of copper-catalyzed synthesis of indoles, see: (a) Ohno, H.; Ohta, Y.; Oishi, S.; Fujii, N. Angew. Chem., Int. Ed. 2007, 46, 2295. (b) Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2009, 74, 7052. (c) Ohta, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2009, 11, 1979. (d) Cai, Q.; Li, Z.; Wei, J.; Ha, C.; Pei, D.; Ding, K. Chem. Commun. 2009, 7581. (e) Chen, Z.; Zheng, D.; Wu, J. Org. Lett. 2011, 13, 848.

(6) For selected examples of iron-catalyzed synthesis of indoles, see: (a) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. Org. Lett. 2010, 12, 3736. (b) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013, 135, 620.

(7) For selected examples of rhodium-catalyzed synthesis of indoles, see: (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500. (b) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed. 2008, 47, 5056. (c) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74, 6442. (d) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Angew. Chem., Int. Ed. 2011, 50, 1702. (e) Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem. Soc. 2011, 133, 4702.

(8) (a) Jordaan, A.; Arndt, R. R. J. Heterocycl. Chem. 1968, 5, 723.
(b) Abu Safieh, K. A.; Darras, F. H.; Ayoub, M. T.; El-Abadelah, M. M.; Sabri, S. S.; Voelter, W. Heterocycles 2007, 71, 2681. (c) Pidlypnyi, N.; Uhrner, F.; Nieger, M.; Drafz, M. H. H.; Huebner, E. G.; Namyslo, J. C.; Schmidt, A. Eur. J. Org. Chem. 2013, 34, 7739.

(9) For the synthesis and properties of imidazole derivatives, see: (a) Lipshutz, B. H.; Vaccaro, W.; Huff, B. Tetrahedron Lett. **1986**, 27, 4095. (b) Lipshutz, B. H.; Huff, B.; Hagen, W. Tetrahedron Lett. **1988**, 29, 3411. (c) Lipshutz, B. H.; Hagen, W. Tetrahedron Lett. **1992**, 33, 5865. (d) Delest, B.; Nshimyumukiza, P.; Fasbender, O.; Tinant, B.; Marchand-Brynaert, J.; Darro, F.; Robiette, R. J. Org. Chem. **2008**, 73, 6816. (e) Joo, J. M.; Tour, B. B.; Sames, D. J. Org. Chem. **2010**, 75, 4911. (f) Shibahara, F.; Yamauchi, T.; Yamaguchi, E.; Murai, T. J. Org. Chem. **2012**, 77, 8815. For reviews, see: (g) Lipshutz, B. H. Chem. Rev. **1986**, 86, 795. (h) Schnrch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. **2006**, 3283. (i) Du, H.; He, Y.; Sivappa, R.; Lovely, C. J. Synlett **2006**, 7, 965. (j) Satoh, T.; Miura, M. Chem. Lett. **2007**, 36, 200. (k) Bellina, F.; Rossi, R. Adv. Synth. Catal. **2010**, 352, 1223.

(10) (a) Zheng, D.; Li, S.; Luo, Y.; Wu, J. Org. Lett. 2011, 13, 6402.
(b) Qiu, G.; Wu, J. Chem. Commun. 2012, 48, 6046. (c) Zheng, D.; Li, S.; Wu, J. Chem. Commun. 2012, 48, 8568. (d) Zheng, D.; Li, S.; Wu, J. Org. Lett. 2012, 14, 2655. (e) Li, S.; Wu, J. Chem. Commun. 2012, 48, 8973.

Financial support from National Natural Science Foundation of China (No. 20864008) is gratefully acknowledged.

The Journal of Organic Chemistry

(11) For reviews, see: (a) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed.
2000, 39, 3168. (b) Suginome, M.; Ito, Y. In Science of Synthesis; Murahashi, S.-I., Ed.; Thieme: Stuttgart, 2004; Vol. 19, p 445.
(c) Dömling, A. Chem. Rev. 2006, 106, 17. (d) Lygin, A. V.; Meijere, A. D. Angew. Chem., Int. Ed. 2010, 49, 9094. (e) Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.; Nenajdenko, V. G. Chem. Rev. 2010, 110, 5235.

(12) For selected examples, see: (a) Schöllkopf, U. Angew. Chem., Int. Ed. 1977, 16, 339. (b) Takaya, H.; Kojima, S.; Murahashi, S. Org. Lett. 2001, 3, 421. (c) Larionov, O. V.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 5664. (d) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260. (e) Kanazawa, C.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2006, 128, 10662. (f) Benito-Garagorri, D.; Bocokiae, V.; Kirchner, K. Tetrahedron Lett. 2006, 47, 8641. (g) Bonin, M.-A.; Giguere, D.; Roy, R. Tetrahedron 2007, 63, 4912. (h) Lygin, A. V.; Larionov, O. V.; Korotkov, V. S.; de Meijere, A. Chem.—Eur. J. 2009, 15, 227. (i) Zhou, H.; Zhang, W.; Yan, B. J. Comb. Chem. 2010, 12, 206. (j) Li, Y.; Xu, X.; Tan, J.; Xia, C.; Zhang, D.; Liu, Q. J. Am. Chem. Soc. 2011, 133, 1775. (k) Monge, D.; Jensen, K. L.; Marín, I.; Jørgensen, K. A. Org. Lett. 2011, 13, 328. (l) Cai, Q.; Tao, Z.; Xu, T.; Fu, L.; Ding, K. Org. Lett. 2011, 13, 340.

(13) For selected examples, see: (a) Fayol, A.; Zhu, J. Angew. Chem., Int. Ed. 2002, 41, 3633. (b) Fayol, A.; Zhu, J. Org. Lett. 2004, 6, 115.
(c) Bonne, D.; Dekhane, M.; Zhu, J. Angew. Chem., Int. Ed. 2006, 45, 2485. (d) Fayol, A.; Zhu, J. Org. Lett. 2007, 7, 239. (e) Wang, S.; Wang, M.; Wang, D.; Zhu, J. Org. Lett. 2007, 9, 3615. (f) Yue, T.; Wang, M.; Wang, D.; Masson, G.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48, 6717. (g) Mossetti, R.; Pirali, T.; Tron, G. C.; Zhu, J. Org. Lett. 2010, 12, 820. (h) Lalli, C.; Bouma, M. J.; Bonne, D.; Masson, G.; Zhu, J. Chem.—Eur. J. 2011, 17, 880.

(14) For reviews, see: (a) Khorana, H. G. Chem. Rev. 1953, 67, 145.
(b) Kurzer, F.; Douraghi-Zadeh, K. Chem. Rev. 1967, 67, 107.
(c) Williams, A.; Ibrahim, I. T. Chem. Rev. 1981, 81, 589.

(15) For selected examples, see: (a) Schmittel, M.; Steffen, J.; Engels, B.; Lennartz, C.; Hanrath, M. Angew. Chem., Int. Ed. 1998, 37, 2371.
(b) Li, H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 5512.
(c) Zhang, W.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2005, 127, 1678. (d) Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2006, 25, 5515. (e) Saito, T.; Sugizaki, K.; Otani, T.; Suyama, T. Org. Lett. 2007, 9, 1239. (f) Zhang, W.; Nishiura, M.; Hou, Z. Chem.—Eur. J. 2007, 13, 4037. (g) Zhang, W.; Hou, Z. Org. Biomol. Chem. 2008, 6, 1720.
(h) Wang, Y.; Chi, Y.; Zhang, W.; Wang, Z.; Xi, Z. J. Am. Chem. Soc. 2012, 134, 2926.

(16) (a) Hoogenboom, B. E.; Oldenziel, O. H.; Van Leusen, A. M. Org. Synth. 1977, 57. (b) Ten Have, R.; Leusink, F. R.; Van Leusen, A. M. Synthesis 1996, 7, 871. (c) Ten Have, R.; Huisman, M.; Meetsma, A.; Van Leusen, A. M. Tetrahedron 1997, 53, 11355. (d) Van Leusen, A. M.; Van Leusen, D. e-EROS Encycl. Reagents Org. Synth. 2001, DOI: 10.1002/047084289X.rd197. (e) Van Leusen, D.; Van Leusen, A. M. Org. React. 2001, 57, 417. (f) Van Leusen, A. M.; Van Leusen, D.; Czako, B. e-EROS Encycl. Reagents Org. Synth. 2007, DOI: 10.1002/047084289X.rt150.pub2.

(17) (a) Saito, T.; Shiotani, M.; Otani, T.; Hasaba, S. *Heterocycles* **2003**, *60*, 1045. (b) Schmittel, M.; Steffen, J.-P.; Rodríguez, D.; Engelen, B.; Neumann, E.; Emin Cinar, M. J. Org. Chem. **2008**, *73*, 3005.